Терморегулятор своими руками: пошаговая инструкция изготовления самодельного устройства

Терморегулятор для погреба своими руками. Схема и описание

В данной статье рассматривается самодельный терморегулятор для погреба, который можно изготовить своими руками из доступных недорогих радиодеталей. Схема достаточно проста и состоит из двух блоков. Первый измерительный – собран на базе компаратора 554СА3, второй блок собран на регуляторе мощности КР1182ПМ1 выполняющий роль коммутатора нагрузки до 1000 Вт.

Описание работы терморегулятора

Как уже было сказано выше, измеритель температуры терморегулятора для погреба построен на основе компаратора DD1.

На один из его входов (3 прямой вход) подается постоянное напряжение с делителя напряжения состоящего из резисторов R3 и R4. На другой его вход (4 инверсный вход) также подается напряжение с делителя на резисторах R1 и R2.

Резистор R2 представляет собой терморезистор ММТ-4 и является измерительным элементом конструкции.

При температуре в погребе выше чем 3…6 градусов на выводах компаратора DD1 (выв. 3 и 4) находится равное напряжение, вследствие чего на выходе (9) присутствует лог.1. Поэтому на реле K1 нет напряжения и его контакты замкнуты. Это приводит к блокировке работы фазового регулятора КР1182ПМ1 и терморегулятора в целом.

Если же температура в погребе опустится ниже отметки  6…3 градусов, то это приведет к увеличению сопротивления терморезистора R2 и как следствие это приведет к разбалансировке напряжений на входах компаратора. Теперь на выходе DD1 появится лог.0 и включится реле. Реле, разомкнув свои контакты, разрешает работу DD2.

Медленный заряд конденсатора С1 приводит к постепенному нарастанию напряжения и из-за этого произойдет плавное (в течении 1-2 секунды) включение электрических ламп, служащих в качестве нагревательного элемента терморегулятора погреба.

Подобный  режим работы устройства сохраняет лампы от перегорания. Подстроечный резистор R4 необходим для более точной настройки требуемого уровня температурного режима. Откалибровать терморегулятор можно своими руками по термометру, установленному в погребе.

В качестве подстроечного резистора R4 использован резистор марки СП4-1. Его корпус водонепроницаем и защищен от пыли и грязи.

Терморезистор R2 типа ММТ-4 на 3,9 кОм. Так же возможно применить другой с сопротивлением в районе от 1 кОм до 10 кОм.

Отрицательный ТКС означает, что при нагреве термистора его сопротивление уменьшается, в отличие от позистора (положительный ТКС) сопротивление которого возрастает с увеличением температуры.

Терморезистор монтируется прямо на самодельную печатную плату. В случае если планируется применить выносной вариант датчика, то терморезистор подсоединяется к плате проводом в экранирующей оплеткой. И еще необходимо подпаять  неполярный конденсатор 1 мкФ между выводом (3) компаратора  и общим  проводом схемы.

Реле К1 — герконовое реле с небольшим током потребления. Другое более мощное реле использовать нельзя, поскольку оно подключено непосредственно к выходу компаратора, ток нагрузки которого должен быть не более   50 мА.

Тиристоры, возможно, заменить на КУ202К, КУ202Л, КУ202М. При использовании тиристоров  КУ202К, КУ202Л мощность нагревательного элемента должна быть не более 200 Вт. В роли нагревателя в погреб крайне удобно применить электролампы накаливания.

Четыре лампы по 100Вт, расположенные по углам погреба, гарантируют поддержание постоянной температуры в районе от 3 до 6 градусов при небольшом объеме погреба. Все постоянные резисторы типа МЛТ-0,25 или CF-0,25.

Следует отметить, что резисторы CF имеют цветовую маркировку.

Как сделать терморегулятор своими руками: пошаговая инструкция

Рассмотрим, как изготавливаются терморегуляторы (термореле) с датчиком температуры воздуха своими руками на 12 В. Сборка прибора осуществляется в такой последовательности:

  1. Прежде всего, нужно подготовить корпус. Подойдет отслуживший свое счетчик, например, «Гранит-1».
  2. Схему можно собрать на плате от того же счетчика. К прямому входу компаратора (помечен знаком «+») подключается потенциометр, позволяющий задавать температуру. К инверсному входу (знак «-») – термодатчик LM335. Если напряжение на прямом входе окажется более высоким, чем на инверсном, на выходе компаратора установится высокий уровень (единица) и транзистор подаст питание на реле, а оно — на нагреватель. Как только напряжение на инверсном входе окажется большим, чем на прямом, уровень на выходе компаратора станет низким (ноль) и реле отключится.
  3. Чтобы обеспечить перепад температур, то есть срабатывание терморегулятора, к примеру, при 23-х градусах, а отключение – при 25-ти, необходимо при помощи резистора создать отрицательную обратную связь между выходом и прямым входом компаратора.
  4. Трансформатор для питания терморегулятора можно изготовить из катушки от старого электросчетчика индукционного типа. На ней имеется место для вторичной обмотки. Чтобы получить напряжение в 12 В, необходимо намотать 540 витков. Их удастся уместить, если использовать провод диаметром 0,4 мм.

Простой самодельный термостат

Для включения нагревателя удобно использовать клеммник счетчика.

Детали устройства регулятора температуры своими руками

В роли датчика температуры обычно выступает терморезистор – элемент, электрическое сопротивление которого меняется в зависимости от температуры. Используют и полупроводниковые элементы – транзисторы и диоды, на характеристики которых температура также оказывает влияние: при нагреве увеличивается ток коллектора (у транзисторов), при этом наблюдается смещение рабочей точки и транзистор перестает работать, не реагируя на входной сигнал.

Но у таких сенсоров есть существенный недостаток: их довольно сложно откалибровать, то есть «привязать» к определенным значениям температуры, из-за чего точность самодельного терморегулятора оставляет желать лучшего.

Между тем промышленность давно освоила выпуск недорогих термодатчиков, калибровка которых осуществляется в процессе изготовления.

К таковым относится прибор марки LM335 от компании National Semiconductor, которым мы и рекомендуем воспользоваться. Стоимость этого аналогового термодатчика составляет всего 1 доллар.

«Тройка» на первой позиции цифрового ряда в маркировке означает, что прибор ориентирован на применение в бытовой технике. Модификации LM235 и LM135 предназначены для использования, соответственно, в промышленности и в военной сфере.

Имея в своем составе 16 транзисторов, этот датчик работает как стабилитрон. При этом его напряжение стабилизации зависит от температуры.

Зависимость следующая: на каждый градус по абсолютной шкале (по Кельвину) приходится 0,01 В напряжения, то есть при нуле по Цельсию (273 по Кельвину) напряжение стабилизации на выходе составит 2,73 В. Производитель калибрует датчик по температуре в 25С (298К). Рабочий диапазон лежит в пределах от -40 до +100 градусов Цельсия.

Таким образом, собирая терморегулятор на базе LM335, пользователь избавляется от необходимости подбирать методом проб и ошибок эталонное напряжение, при котором прибор обеспечит требуемую температуру.

Его можно рассчитать, используя несложную формулу:

V = (273 + T) x 0.01,

Где Т – интересующая пользователя температура по шкале Цельсия.

Помимо термодатчика нам понадобится компаратор (подойдет марки LM311 от того же производителя), потенциометр для формирования эталонного напряжения (настройка требуемой температуры), выходное устройство для подключения нагрузки (реле), индикаторы и блок питания.

Детали устройства

Выше было предложено использовать в качестве температурного сенсора термистор, но это не единственный вариант.

В принципе, в этом качестве может быть задействован любой полупроводниковый элемент, так как характеристики этих деталей всегда зависят от температуры.

Так, например, ток коллектора обычного биполярного транзистора при нагреве возрастает, что неминуемо отражается на работе усилительного каскада (транзистор перестает реагировать на входной сигнал из-за смещения рабочей точки).

Похожим образом реагируют на изменение температуры и кремниевые диоды. При температуре +25 градусов напряжение на контактах свободного диода составит около 700 мВ, а замеры на перманентном диоде покажут примерно 300 мВ. Если же температура будет повышаться, напряжение с каждым градусом будет падать примерно на 2 мВ.

Однако, у всех этих элементов есть существенный недостаток: собранные на их базе терморегуляторы с большим трудом приходится настраивать, иначе говоря, калибровать. Ведь нам только приблизительно известно, какую элемент демонстрирует характеристику при той или иной температуре и как именно он реагирует на ее колебания. Гораздо проще работать с выпускаемыми современной промышленностью термодатчиками, проходящими калибровку еще на стадии производственного процесса.

Сильного удорожания проекта покупка такой детали не вызовет. Так, например, аналоговый термодатчик марки LM-335 компании National Semiconductor стоит всего 1 доллар.

Можно использовать и его модификации – датчики LM-135 и LM-235, хотя они предназначены для применения, соответственно, в военной электронике и промышленности.

Датчик LM-335 содержит 16 транзисторов и работает подобно стабилитрону, у которого напряжение стабилизации находится в зависимости от температуры.

Только в данном случае все параметры досконально известны: на каждый градус по шкале абсолютных температур (Кельвина) приходится напряжение в 10 мВ или 0,01 В.

Таким образом, если мы хотим знать, каким будет напряжение стабилизации LM-335 при температуре 20 градусов Цельсия, нужно прибавить к этому значению 273 (перевод в градусы Кельвина), а затем результат умножить на 0,01 В. В данном случае получим 2,93 В. На производстве датчик калибруется по температуре 25 градусов Цельсия. Рабочий диапазон температур, в пределах которого напряжение меняется линейно и по указанному закону (10 мВ/градус) лежит в пределах от -40 до +100 градусов Цельсия.

Итак, зная точное напряжение стабилизации LM-335 при той или иной температуре, нам остается выставить соответствующее напряжение на втором входе компаратора – и настройка терморегулятора будет завершена.

  1. Схему на базе термодатчика LM-335 следует компоновать таким образом, чтобы через него протекал ток величиной от 0,45 до 5 мА. Отметим, что напряжение питания терморегулятора не обязательно должно составлять 12 В. Это значение было предложено только потому, что оно позволяет применить вместо самодельного блока питания (понижающий трансформатор + выпрямитель + стабилизатор) обычный адаптер, который можно недорого купить в магазине. Если же все делать самостоятельно, то понижающий трансформатор можно собрать в расчете на выходное напряжение в пределах 3 – 15 В. Главное, чтобы на такое же напряжение было рассчитано используемое в схеме реле.
  2. Далее подбирают сопротивление резисторов делителя напряжения и переменного резистора таким образом, чтобы при имеющемся напряжении сила протекающего через термодатчик тока находилась в указанных пределах. В принципе, датчик останется работоспособным и при силе тока свыше 5 мА, но тогда он будет сильно греться, из-за чего терморегулятор будет работать некорректно.
  3. В качестве компаратора можно применить микросхему того же производителя, выпускаемую под маркой LM-311 (модификации для «военки» и промышленности — соответственно, LM-111 и LM-211).

Используемое в схеме реле является многоконтактным (типа МКУ). В упрощенном исполнении (без аккумулятора) можно воспользоваться автомобильным реле

Важно удостовериться, что допустимая для данного реле величина силы тока соответствует мощности нагревателя

Настройка терморегулятора

Как уже говорилось, терморегулятор на базе датчика LM335 в настройке не нуждается. Достаточно знать напряжение, подаваемое потенциометром на прямой вход компаратора.

Измерить его можно при помощи вольтметра. Необходимое значение напряжения определяется по приведенной выше формуле.

Если нужно, к примеру, чтобы прибор срабатывал при температуре в 20 градусов, оно должно составлять 2,93 В.

Если в качестве термодатчика применяется какой-либо иной элемент, эталонное напряжение придется проверять опытным путем. Для этого необходимо воспользоваться цифровым термометром, например, ТМ-902С. Для точности настройки датчики термометра и терморегулятора можно соединить посредством изоленты, после чего их помещают в среду с различной температурой.

Терморегулятор из подручных материалов

Ручку потенциометра нужно плавно вращать, пока терморегулятор не сработает. В этот момент следует посмотреть на шкалу цифрового термометра и отображаемую на ней температуру нанести на шкалу терморегулятора. Можно определить крайние точки, например, для температуры в 8 и 40 градусов, а промежуточные значения отметить, разделив диапазон на равные части.

Если цифрового термометра под рукой не оказалось, крайние точки можно определять по воде с плавающим в ней льдом (0 градусов) или по кипящей воде (100 градусов).

Сталкиваясь с выбором обогревателя, люди обнаруживают, что типов приборов существует немало, но выбрать нужно один. Керамический обогреватель для дома – тонкости правильного выбора, обзор моделей и цен.

Нормы влажности воздуха и способы ее измерения представлены в этой теме.

Инструкция по сборке

Необходимые материалы, детали и инструменты:

  • лупа;
  • плоскогубцы;
  • паяльник;
  • изолирующая лента;
  • несколько отвёрток;
  • провода медные;
  • полупроводники;
  • стандартные красные светодиоды;
  • плата;
  • текстолит форгированный;
  • лампы;
  • стабилитрон;
  • терморезистор;
  • тиристор.
  • дисплей и генератор внутреннего типа мощностью в 4Мгу (для создания цифровых устройств на микроконстроллере);

Пошаговая инструкция:

  1. Прежде всего, необходима соответствующая микросхема, к примеру, К561ЛА7, CD4011
  2. Плату необходимо подготовить к прокладыванию путей.
  3. К подобным схемам неплохо подходят терморезисторы с мощностью 1 kOm до 15 kOm, и он обязан находиться внутри самого объекта.
  4. Нагревающий прибор обязан быть включен в цепь резистора, из-за того, что перемена мощности, напрямую зависящая от снижения градусов, оказывает влияние на транзисторы.
  5. Впоследствии, такой механизм будет согревать систему до того момента, пока мощность внутри термодатчика не возвратится к первоначальному значению.
  6. Датчики регулятора подобного плана нуждаются в настройке. Во время значительных перепадов в окружающей атмосфере, необходимо контролировать нагрев внутри объекта.

Сборка цифрового прибора:

  1. Микроконтроллер следует соединить вместе с датчиком температуры. Он должен иметь выходы портов, которые необходимы для установки стандартных светодиодов, работающих совместно с генератором.
  2. После подключения устройства в сеть с напряжением в 220V, светодиоды будут автоматически включаться. Это будет свидетельством о том, что прибор находится в рабочем состоянии.
  3. В конструкции микроконтроллера находиться память. Если настройки прибора сбиваются, память автоматически их возвращает в изначально оговоренные параметры.

Собирая конструкцию, нельзя забывать о техники безопасности. Во время применения термодатчика в водянистой или влажной атмосфере, его выводы обязаны герметично изолироваться. Значение терморезистора R5 может обозначаться от 10 до 51 кОм. При этом, сопротивление резистора R5 обязано иметь аналогичное значение.

Взамен обозначенных микросхемы К140УД6 можно использовать К140УД7, К140УД8, К140УД12, К153УД2. В роли стабилитрона VD1 можно внедрять любой инструмент с мощностью стабилизации 11…13 V.

В случае, когда нагреватель превышает напряжение в 100 ВТ, тогда диоды VD3-VD6 обязаны превосходить по мощности (к примеру, КД246 или их аналоги, с обратной мощностью минимум в 400В), при этом тринистор необходимо монтировать на маленькие радиаторы.

Значение FU1 также следует сделать более большим. Управление аппаратом сводится к подбору резистора R2, R6 с целью безопасного закрывания и открывания тринистора.

Варианты подключения

  1. К системе тёплого пола;
  2. К ТЭНу;
  3. К обогревателю.

Подключение термостата к системе тёплого пола

Стандартный терморегулятор тёплого пола идёт в комплекте поставки с подробной инструкцией подключения прибора к системе тёплых полов. Можно подключать ТР самостоятельно, пользуясь обозначениями под клеммниками.

Нагревательный мат тёплого пола

На тыльной стороне регулятора расположены три пары клеммных гнёзд для проводов. Первая пара предназначена для подсоединения двужильного сетевого кабеля. Гнездо «L» – фаза, «N» – ноль.

Вторая пара гнёзд предназначена для соединения с выводами тёплого пола – L1 и N1. Пятую и шестую клемму используют для того, чтобы подключаться к датчику температуры.

Подключение терморегулятора

Регуляторы температуры полов могут быть вставленными в подрозетник или закреплёнными на стене. Термодатчик бывает, как встроенным в корпус прибора, так и установленным на конце выносного кабеля.

В первом случае происходит замер температуры воздуха внутри помещения. Во втором варианте датчик измеряет степень нагрева финишного покрытия пола.

Подключение термостата к ТЭНу

Подключение термостата к электрическому нагревателю приходится осуществлять через магнитный пускатель. Это связано с тем, что мощность регулятора далеко несопоставима с мощностью ТЭНов.

Магнитный пускатель (МП) нужен при управлении термостатом сразу несколькими приборами обогрева. МП врезают в фазовый провод параллельно с терморегулятором. Регулировка режимами работы тенов осуществляется термостатом, ток питания проходит через МП. Это даёт возможность использовать трёхфазную электросеть, что позволяет эксплуатировать нагревательные элементы большой мощности.

Многие ТР оснащены электронными микропроцессорами, которые выдают дополнительно показатели уровня влажности, давления и времени, необходимого для достижения величин заданных параметров.

Подсоединение терморегулятора к обогревателю

Термостаты бывают механического и электронного действия. Последнее время вторые модели активно вытесняют своих механических аналогов. Применение современной электроники позволяет более эффективно управлять температурным режимом в заданной среде.

ТР для обогревателей помещений встраивают в корпуса калориферов или выносят на удаление от приборов отопления. Регулятор, прежде всего, подключается к электрической сети, затем через схему управления соединяется непосредственно с термодатчиком.

Дополнительная информация. Инфракрасные обогреватели соединяются с термостатом в большинстве вариантов через магнитный пускатель. Чтобы выполнить правильное подключение прибора, нужно строго следовать пунктам прилагаемой инструкции.

Особенности, как подсоединяют устройства регуляции температурного режима, зависят от вида отопительных приборов. Это может быть одножильное или двужильное подключение ТР тёплых полов. Подключение двухфазного термостата к нагревательным элементам трёхфазного тока осуществляется только через магнитный пускатель. Для водяного отопления терморегулятор врезают прямо в радиатор. В каждом конкретном случае существует своя схема подключения терморегулятора.

Самодельный темпер в кофеварку для любителей кофе

Огромное число людей не представляют свою жизнь без чашки кофе. Одни предпочитают посещать для этого кофейни, другие готовят напиток дома. В любом случае они сталкиваются со специальным приспособлением для приготовления кофе – темпером. Такое название получило ручное устройство для спрессовывания кофе в фильтре кофеварки.

Спрессованный молотый кофе превращается в плотный брикет, который при варке медленно пропитывается водой, отдавая ей свой аромат. Полученный таким образом кофе имеет насыщенный вкус и более высокое качество, чем напиток, сваренный традиционным способом.

В продаже можно встретить множество моделей темперов разных производителей. Они различаются качеством и материалами изготовления. От этого напрямую зависит и их стоимость. Наиболее простые и дешевые изделия изготавливаются из пластика, более дорогие приспособления для профессионалов – из качественной нержавеющей стали.

Любители кофе, желающие получить уникальную модель темпера, предпочитают изготавливать их самостоятельно. Однако для этого нужно обладать определенными инструментами и профессиональными навыками работы с ними, например, понадобится токарный станок. Если таких инструментов нет, можно заказать изготовление самодельного темпера профессиональному токарю.

Итак, для изготовления темпера понадобится заготовка из алюминия, бронзы или нержавеющей стали. В некоторых случаях ручной пресс можно выточить из куска оргстекла подходящего размера. Стоит помнить, что алюминиевые и бронзовые темперы подвержены образованию окислов. Недостаточная масса таких темперов, впрочем, как и изготовленных из оргстекла, не позволяют качественно спрессовать кофейный порошок.

Диаметр заводских изделий составляет от 50 до 60 мм. Это обусловлено размерами фильтров кофеварок. Формы прессов могут быть плоскими, округлыми или выпуклыми. По своим функциональным качествам они абсолютно одинаковы. Плоский темпер спрессовывает кофе равномерно, а выпуклый только в середине.

Выточив из доступного материала нижнюю часть ручного пресса, необходимо соединить ее с рукоятью. Ее изготавливают из дерева с плотной и твердой структурой, например березы или дуба. Соединяют две части с помощью винта, проходящего через металлическое основание темпера. Некоторые мастера делают свои изделия монолитными, вытачивая пресс и рукоятку из одного куска материала.

Отечественный или китайский терморегулятор для инкубатора – обзор

Инкубатор можно приобрести в готовом виде со всеми необходимыми опциями. Специально для тех, кому необходимы индивидуальные параметры, на рынке имеется широкий ассортимент универсальных или специализированных контроллеров, решающих одну узкую или целый спектр задач.

Ниже рассмотрим готовые предложение российских и китайских терморегуляторов для инкубаторов.

Отечественные / из стран СНГ

Контроллер «Мечта-1» . Производится компанией AKIP-DON (Украина). Чувствительность термоэлемента (погрешность) – до 0,1°C. Диапазон температур – 0-85°C. Работает в цепях с переменным напряжением 220В, с силой тока – до 16 А. помимо температуры, контроллер может управлять уровнем влажности (от 10 до 100%) и поворотом лотков с яйцами (за счет таймера работы и простоя).

Терморегулятор для инкубатора «Золушка». Устройство поставляется в комплекте готового инкубатора, хотя многие магазины предлагают приобрести термостат отдельно. Всего существует две модификации: для работы от сети 220В и комбинированные (как от 220 В, так и от постоянного тока 12 В). Подойдет такой регулятор температуры и к другим отечественным инкубаторам, таким как «Ястреб», «Золушка», «Наседка» и т.п. Погрешность измерения температуры – 0,2°C.

Терморегулятор ЦТР-1 С. Отличается невысокой ценой и простой настройкой. Выставляется только требуемая температура, порог отключения ниже на 0,2°C. Работает с активной нагрузкой, например, с тэнами или нагревателями мощностью до 1 кВт. Дополнительных опций кроме нагрева – нет.

Терморегулятор для инкубатора на Алиэкспресс

RINGDER RC-113M с PID-контроллером . Интересное устройство с приемлемой ценой за такой функционал. Работает от сети переменного тока 220В. В настройках можно выставить порог включения и отключения отдельно. Точность измерения внешним датчиком – до 0,1°C. Контроллер работает в соответствии с PID алгоритмом (плавное управление током).

KETOTEK F0004 DC 12 В . Терморегулятор с цифровым дисплеем и точностью измерения в 0,1°C. Работает только в цепи с питанием постоянным током с напряжением 12 В (требуется отдельный преобразователь при питании от сети переменного тока 220 В). В комплекте поставляется внешний термодатчик. Корпус устройства отсутствует (предоставляется в виде печатной платы со всеми необходимыми элементами и разъемами подключения), что и обусловливает низкую цену агрегата.

Как сделать простой терморегулятор для инкубатора своими руками по схеме

В сети Интернет можно встретить много различных схем сборки и подключения терморегулятора к инкубатору. Выбор требуемой конфигурации зависит от предполагаемого объема загрузки, типа яиц (их требовательности к температурному и влажностному режиму, и т.п.) и возможностей самого владельца.

Ниже приведем наиболее простую схему без использования микросхем и т.п.

Список всех элементов для простоты поиска по магазинам радиодеталей:

  • R1 (резистор на 2кОм);
  • R2 (терморезистор ММТ-13, ММТ-1, ММТ-9, КМТ-12 с сопротивлением от 1 до 10 кОм);
  • R3 (переменный резистор на 6,8 кОм);
  • R4 (резистор 560 Ом);R5 (резистор 36 кОм);
  • V1 (биполярный транзистор КТ315Б);
  • V2 (транзистор МП25Б);
  • V3 (стабилитрон Д814В);
  • V4 (выпрямительный диод Д226Б);
  • C1 (конденсатор оксидный полярный 20 мкФ до 400 В);
  • C2 (конденсатор оксидный полярный 10 мкФ до 30В);
  • F1 (тугоплавкий предохранитель на 0,5 А);
  • K1 (электромагнитное реле РЭС-15 — РС4.591.003).

Перед походом в радиолавку стоит уточнить аналоги всех обозначенных элементов.

ВИДЕО ИНСТРУКЦИЯ » alt=»»> Работа терморегулятора выполняется следующим образом:

ПРОДОЛЖЕНИЕ ВИДЕО » alt=»»> Ввиду того, что реле РЭС-15 может работать только с небольшим током коммутации (до 0,25 А), для использования с мощными нагревателями необходимо выполнить подключение промежуточного реле.

Принцип работы терморегулятора

Терморегулятор — это устройство, способное реагировать на изменения температурного режима. По типу действия различают терморегуляторы триггерного типа, отключающие или включающие нагрев при достижении заданного предела, или устройства плавного действия с возможностью тонкой и точной настройки, способные контролировать изменения температуры в диапазоне долей градуса.

Существуют две разновидности терморегуляторов:

  1. Механический. Представляет собой устройство, использующее принцип расширения газов при изменении температуры, или биметаллические пластины, изменяющие свою форму от нагревания или охлаждения.
  2. Электронный. Состоит из основного блока и датчика температуры, подающего сигналы об увеличении или понижении заданной температуры в системе. Используется в системах, требующих высокой чувствительности и тонкой регулировки.

Механические устройства не позволяют обеспечить высокой точности настройки. Они являются одновременно и датчиком температуры, и исполнительным органом, объединёнными в единый узел. Биметаллическая пластина, используемая в нагревательных устройствах, представляет собой термопару из двух металлов с разным коэффициентом теплового расширения.

Главное предназначение терморегулятора — автоматическое поддержание необходимой температуры

Нагреваясь, один из них становится больше другого, отчего пластина изгибается. Контакты, установленные на ней, размыкаются и прекращают нагрев. При охлаждении пластина возвращается в изначальную форму, контакты вновь замыкаются и нагрев возобновляется.

Камера с газовой смесью — чувствительный элемент термостата холодильника или отопительного терморегулятора. При изменениях температуры меняется объём газа, что вызывает перемещение поверхности мембраны, соединённой с рычагом контактной группы.

В терморегуляторе для отопления используется камера с газовой смесью, работающая по закону Гей-Люссака — при изменении температуры меняется объём газа

Механические термостаты надёжны и обеспечивают устойчивую работу, но настройка режима работы происходит с большой погрешностью, практически «на глазок». При необходимости тонкой настройки, обеспечивающей регулировку в пределах нескольких градусов (или ещё тоньше), используются электронные схемы. Датчиком температуры для них служит терморезистор, способный различить мельчайшие изменения режима нагрева в системе. Для электронных схем ситуация обратная — чувствительность датчика слишком высока и её искусственно загрубляют, доводя до пределов разумного. Принцип действия состоит в изменении сопротивления датчика, вызванном колебаниями температуры контролируемой среды. Схема реагирует на смену параметров сигнала и повышает/понижает нагрев в системе до получения другого сигнала. Возможности электронных блоков контроля намного выше и позволяют получить настройку температуры любой точности. Чувствительность таких термостатов даже избыточна, поскольку нагрев и охлаждение — процессы, обладающие высокой инерционностью, которые замедляют время реакции на смену команд.

Заключение

Самостоятельно подключить термореле к котлу – дело несложное, на эту тему в интернете имеется масса материалов. А вот изготовить его своими руками с нуля не так и просто, кроме того, нужен измеритель напряжения и тока, чтобы произвести настройку. Покупать готовое изделие или браться за его изготовление самому – решение принимать вам.

Представляю электронную разработку — самодельный терморегулятор для электрического отопления. Температура для системы отопления, устанавливается автоматически исходя из изменения уличной температуры. Терморегулятору не нужно в ручную, вносить и менять показания для поддержания температуры в отопительной системе.

В теплосети, есть подобные приборы. Для них четко прописаны соотношение средне суточной температур и диаметра стояка отопления. На основании этих данных, задается температура для системы отопления. Данную таблицу теплосети взял за основу. Конечно, некоторые факторы мне неизвестны, здание может оказаться к примеру, не утепленным. Теплопотери такого здания будут большими, нагрева может оказаться недостаточным для нормального отопления помещений. В терморегуляторе есть возможность вносить корректировки для табличных данных. (дополнительно можно прочитать материале по этой ссылке).

Я планировал показать видео в работе терморегулятора, с эклектическим котлом (25Кв), подключенным в систему отопления. Но как оказалось, здание, для которого все это делалось, долгое время было не жилое, при проверке, отопительная система практически вся пришла в негодность. Когда все восстановят, не известно, возможно это будет и не в этом году. Так как в реальных условиях я не могу настраивать терморегулятор и наблюдать динамику изменяя температурных процессов, как в отоплении, так и на улице, то я пошел другим путем. Для этих целей соорудил макет отопительной системы.

Роль электрокотла, выполняет стеклянная пол литровая банка, роль нагревательного элемента для воды- пятьсот ватный кипятильник. Но при таком объема воды, данной мощности было в избытке. Поэтому кипятильник подключил через диод, понизив мощность нагревателя.

Соединенные последовательно, два алюминиевых проточных радиатора, выполняют отбор тепла из отопительной системы, образуя подобие батареи. При помощи кулера создаю динамику остывания отопительной системы, так как программа в терморегуляторе отслеживает скорость нарастание и спад температуры в отопительной системе. На обратке, расположен цифровой датчик температуры T1, на основании показаний которого поддерживается заданная температура в отопительной системе.

Чтобы система отопления начала работать, нужно чтобы датчик T2 (уличный) зафиксировал понижение температуры, ниже +10С. Для имитации изменения уличной температуры, сконструировал мини холодильник на элементе пельтье.

Описывать работу всей самодельной установки нет смысла, все заснял на видео.

Некоторые моменты о сборке электронного устройства:

Электроника терморегулятора, размещается на двух печатных платах, для просмотра и распечатки понадобится программа SprintLaut, не ниже версии 6.0. Терморегулятор для отопления крепится на дин рейку, благодаря корпусу серии Z101, но нечто не мешает расположить всю электронику в другой корпус подходящий по размерам, главное чтобы вас устраивало. В корпусе Z101 не предусмотрено окно для индикатора, так что придется самостоятельно разметить и вырезать. Номиналы радиодеталей указаны на схеме, кроме клеммников. Для подключения проводов я применил клеммники серии WJ950-9.5-02P (9шт.) но их можно заменить на другие, при выборе учитывайте чтобы шаг между ножками совпадал, также высота клеммника не мешала закрываться корпусу. В терморегуляторе применяется микроконтроллер, который нужно запрограммировать, конечно, прошивку я также предоставляю в свободном доступе (возможно в процессе работы придется дорабатывать). Прошивая микроконтроллер, установите работу внутреннего тактового генератора микроконтроллера на 8Мгц.

P.S.
Конечно, отопление дело серьезное и скорей всего придется доработать устройство, так что законченным устройством пока нельзя назвать. Все изменения, которым подвергнется терморегулятор я в дальнейшем внесу.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Усадьба в Ачинске
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: